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Time delay, resonances, Riemann zeros and chaos in a model 
quantum scattering system 

David M Wardlawt and Wojciech Jaworski$ 
Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada 

Received 17 May 1988 

Abstract. The quantum treatment of an intrinsically chaotic model scattering system 
originally studied by Gutzwiller is extended to include the time delay and to make explicit 
the zeros of the Riemann zeta function in the mathematical expressions for the scattering 
matrix S and the time delay. The system consists of a particle moving on a two-dimensional 
surface of constant negative curvature. The scattering in this unusual system is dominated 
by resonances associated with poles of S in the complex momentum plane; the real parts 
of these poles are one-half of the imaginary parts of the Riemann zeros. The resonances 
have a constant width but their average spacing varies with the momentum. The focal 
point is the manifestation of chaotic behaviour in the time delay. Features considered in 
this regard include: the momentum dependence of the time delay in regions of overlapping 
and isolated resonances, the decomposition of the time delay into an average (dynamical) 
component and a fluctuating (chaotic) component, and characterisation of the fluctuating 
component by its autocorrelation function. 

1. Introduction 

The motion of a free particle on a surface of constant negative curvature (a pseudo- 
sphere) has long been known to provide a well defined and tractable example of a 
conservative dynamical system displaying chaotic classical motion [ 11. A large number 
of such systems, undergoing either bound or unbound motion, can be defined by 
specification of suitable boundary conditions (or, equivalently, by suitable tessellations 
of the surface); general features and categories of these systems have been discussed 
by Series [l]. Some recent work [2] focused on the quantum dynamics of a particular 
bound system on the pseudosphere in order to elucidate the meaning of quantum 
chaos and its relation to the known classical chaos. Here we extend Gutzwiller’s 
quantum mechanical treatment [3] of a particular unbound system on the pseudosphere. 
One of our motivations for this extension is to cast theoretical and numerical results 
in forms compatible with traditional scattering theory interpretations of chaotic 
dynamics. We begin by describing the unusual nature of the scattering system. 

It consists of a particle of mass m moving in the upper half-plane 2= 
{(x, y )  E R21y > 0}, with time-independent Hamiltonian 

H=-y2($+<)--. - h 2  h2  
2m ay 8m 
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The half-plane 2 is equipped with non-Euclidean metric ds2 = yd2(dx2+dy2),  thus 
becoming a Riemannian space with constant negative curvature. The scattering is 
non-conventional since it is not the result of interparticle forces but can be imagined 
to arise from (physically non-realisable) constraint forces, i.e. the curvature of the 
space. As explained in some detail by Gutzwiller [3], the Hamiltonian H is the quantum 
mechanical counterpart of the classical Hamiltonian 

H C I  = Y 2  [Pi +P:l 

describing free motion in 3, i.e. motion along geodesics with constant velocity 

U =  2 = { y-2 [ ( g)2 + ( 32]} lI2 = mTJz 

Construction of the corresponding quantum mechanical scattering solutions for the 
Schrodinger equation ih aII, /at = HII, requires careful specification of boundary condi- 
tions in 2. This procedure is non-trivial and is not discussed here; the interested reader 
is referred to [3-61. 

The asymptotic scattering solutions and associated scattering quantities (phase 
shift, scattering matrix and time delay) turn out to be conveniently specified in terms 
of known functions. One of these functions is Riemann’s zeta function whose appear- 
ance signals some sort of chaos, several features of which have been discussed in [3]. 

In § 2 we introduce the time delay which, as in conventional elastic scattering, is 
the energy derivative of the phase shift. The study of this time delay is the central 
feature of the paper. Gutzwiller has interpreted, at relatively small values of the 
‘momentum’ w, the qualitative behaviour of the phase shift in terms of the Riemann 
zeros, i.e. the zeros of the Riemann function. In § 3 we make this connection explicit 
for the scattering matrix and the time delay. In particular, the real parts of the poles 
of the scattering matrix in the complex momentum plane are one half of the imaginary 
part of the Riemann zeros and the time delay expression obtained in § 2 is recast in 
terms of the zeros. Numerical results for the time delay and several of its properties 
are discussed in § 4. 

Our primary motivation for this study is the investigation of time delay in a scattering 
system which is in some sense chaotic. The convenience of the model lies in the 
availability of a dynamically exact time delay expression. Ultimately we are interested 
in the chaotic attributes of collision lifetimes in conventional scattering systems (for 
which exact time delay expressions are generally unobtainable) and hope that the 
present study will provide useful background for such studies. We test a general idea 
recently summarised by Weidenmuller [7] concerning the nature of chaos in quantum 
systems and which here amounts to considering that the momentum dependence of 
the time delay might be usefully expressed as average behaviour on which is superim- 
posed a fluctuating component containing generic or universal behaviour. Another 
interesting feature is that the scattering, and hence the time delay, is strongly influenced 
by resonances whose widths are constant and whose positions are determined by the 
Riemann zeros, the latter having a nearest-neighbour spacing distribution and pair 
correlation function which are well described by the Gaussian unitary ensemble (GUE) 

[8]. As w increases, the average spacing between neighbouring resonance levels 
decreases, eventually resulting in overlapping resonances when the mean spacing is 
less than the width. The appearance of the Riemann zeros in the model system is of 
interest in its own right. It has been proposed [9,10] to treat the imaginary parts of 
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the zeros as eigenvalues of some unknown Hermitian operator and there is speculation 
[ l l]  that the statistical properties of these (bound state) eigenvalues may provide a 
useful model of quantum chaos. Here the zeros arise without assumption or approxima- 
tion in a well defined, albeit unusual, system and instead of describing bound states, 
they determine quasibound resonance scattering states. 

2. Scattering quantities 

2.1. Asymptotic scattering solutions 

Asymptotic ( y  + 00) solutions of the time-independent Schrodinger equation are known 
[ l ,  3-61 to depend only on y and to have the following form?: 

*,(x, y)  ’ y 1 ’ 2 [ y - i w  + S( w)y’”] asy+co (2.1) 

where w = (2E)”’ is the ‘momentum’ associated with energy E (both m and .h are set 
to unity for the remainder of the paper). The quantity S ( w )  in (2.1) is the scattering 
matrix [4,5]. It is complex and is determined by the gamma (r) function and Riemann’s 
zeta ( 5 )  function: 

Since r ($+iw)=r($- iw)*#O and l (1+2iw)=5(1-2iw)*#O for  ER, S ( w )  is uni- 
modular and can be written 

S ( w )  =exp[iS(w)] (2.3) 

where S (  w )  E R. 

time-dependent Schrodinger equation, yielding 
The time dependence of the asymptotic solutions is trivially obtained from the 

- i € ( w ) t  
CLwJX, = e  * w  

= y’”[Iexp{-i[E(w)t+ w In y]} 

+exp{-i[E(w)t- w lny-S(w)]}II as y + m .  (2.4) 

Upon substitution of 0 = In y this becomes a superposition of plane waves multiplied 
by the factor 4 = e*” (which is in fact connected with the definition of the scalar 
product in the Hilbert space of our system [4,5]). One of the plane waves moves 
‘inwards’ with phase velocity U- = - E (  w)/  w = - w/2 and the other ‘outwards’ with 
phase velocity U+ = w/2. Following Gutzwiller’s interpretation, the second wave results 
from scattering (reflection) of the first wave and, accordingly, S(w) is designated as 
the phase shift. Several relevant features of the phase shift are identified in 9 2.2. 

Besides scattering of ‘plane waves’ one can also consider scattering of wavepackets. 
This leads to the concept of time delay, which turns out to be the energy derivative 
of the phase shift, exactly as in conventional elastic scattering theory. To see this let 
us introduce wavepackets x,(x, y )  formed from a continuous superposition of the 

t Gutzwiller arbitrarily introduces the factor a”’ ( a > 0) in his incident wave [3] and thereby defines the 
place for zero phase of the incident waue to be y = a. This factor then leads to a trivial modification of the 
phase shift and the time delay, leaving the fluctuating parts of these quantities unaltered. Therefore, we 
decided to drop the factor (put a = 1) at the very beginning. 
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eigenfunctions Gw,(x,  y )  multiplied by a suitable amplitude function A( w). When A( w )  
vanishes outside a very narrow interval [ w, w + A] such a wavepacket is subject to the 
standard approximate analysis [ 121 involving the concepts of group velocity and time 
delay. For t + -cc we have the ingoing packet: 

x';"(x, y )  = y 1 l 2  exp{-i[E( w)t + w In y ] }  

which moves with group velocity vg = d E (  w)/dw = w. For t + +CC we have the phase- 
shifted outgoing packet 

X ? " ~ ( X ,  y )  = yl/* exp{-i[E( w ) t  - w In y - S (  w)]} 

x enp[ -i7 (-In y+- 
dw 

which also moves with group velocity v, but is delayed or advanced in time by the 
so-called time delay 

T(w) = w-' dS(w)/dw or T ( m )  = d S ( m ) / d E .  (2.7) 

Strictly speaking, a rigorous justification of 6 and T as the phase shift and time 
delay requires that these quantities be properly defined with respect to some reference 
system. In conventional scattering systems (i.e. collisions in Euclidean space mediated 
by an interaction potential) a reference system is established by switching off the 
interaction potential, in which case the reference phase is zero and the reference time 
is a (energy-dependent) free particle transit time. Here there is no interaction potential 
but a reference system can nevertheless be established [4]. For the general case in 
which the wavepacket is not narrow enough to justify (2.5)-(2.7) a rigorous theoretical 
definition of the time delay awaits further mathematical development [13]. It is 
conceivable that assessment of the time delay in the general case may require following 
the time evolution of scattered and unscattered packets numerically; such calculations, 
although feasible, are computationally intensive. Here we present time delay results 
only for arbitrarily narrow wavepackets (i.e. T ( w )  in (2.7)); further studies on broader 
wavepackets are in progress. 

2.2. The phase shift 

Equation (2.3) yields 
S( w)  = Arg S( w )  

= -2w In 7~+2ArgT( ;+iw)+2 Arg 5(1+2iw) 

with the functions Arg T($+iw) and Arg (( 1 + 2 iw)  uniquely defined by the require- 
ments 

= a b g +  Sfl (2.8) 

lim Arg T($+iw) = O  

lim Arg5(1+2iw)=-T/2.  

w-+o 

w++O 

(2.9) 
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The identification of a ‘background’ component 

&(w)  = -2w In n-+2 Arg r ( ;+ iw)  (2.10) 

of the phase shift is motivated by its relatively slow variation with w :  Sbg increases 
monotonically from 0 at w = O  and has simple asymptotics for w+m,  resulting from 
the usual Stirling formula [ 141: 

S,,(w)-2w[ln(w/n-)-l] as w + m .  (2.11) 

Sfl( w )  = 2 Arg L( 1 +2iw). (2.12) 

The interesting part of the phase shift is its ‘fluctuating’ component 

Such a description is motivated by the rapid variation of this quantity, relative to Sbg, 
as is immediately evident in plots (not shown here) of 8 b g  and Sfl against w. The reader 
is referred to figures 5-7 of [3] for plots of Sfl/2 on three widely separated w ranges. 
At w = 0, Sfl has the value - n-; as w increases Sfl fluctuates in an increasingly complicated 
manner. The following bound can, however, be established [15]: 

S,(w) = O(ln 2w) as w + m .  (2.13) 
Gutzwiller [3] has discussed two interesting features of the 5 function: its ability 

to mimic other functions and its difficulty of evaluation, both of which suggest the 
stochastic or chaotic character of the model scattering system. He also points out, 
based on graphical analysis at relatively small w values, that the detailed structure of 
Sfl as a function of w is closely related to the zeros of the 5 function. In 0 3 we make 
the relationship between the Riemann zeros and the scattering matrix and time delay 
explicit for all w values. 

2.3. The time delay 

Differentiating the phase shift (2.8) with respect to energy yields the time delay 

T = dS(d%)/dE 

= w-’ ds(w)/dw 

= w - ’ [ - 2 l n r + 2 R e (  r ‘ ( f + i w )  ) + 4 R e (  5‘( 1 + 2iw) )]  
r ( ;+ iw)  5(1+2iw) 

where Tbg and T~ are the w derivatives of 8 b g  and Sfl, respectively, 
Tfl = T ~ /  w. The background component Tbg is a slowly varying function of w, increasing 
monotonically from -2 In n- - 2y - 4 In 2 ( y = 0.577 21 . . . is Euler’s constant) at w = 0 
and having asymptotics [ 141: 

Tbg( w )  LI 2 In( w /  T) as w+m.  (2.16) 
At w = 0, the fluctuating component T~ has the value 4y and at large w its asymptotic 
bound is analogous to that of Sfl [15]: 

T ~ ( w )  = O(ln 2w) as w+m.  (2.17) 
That T~ is rapidly varying relative to Tbg is easily seen in one of the figures to be 
discussed in Q 4. Note that the time delay is related to the scattering matrix by 
-iS*(E) d S ( E ) / d E  = T ( m )  which has the same form as Smith’s result [16] for 
elastic scattering. 
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3. Appearance of the Riemann zeros 

For the purposes of interpretation and subsequent computation it is useful to express 
both the scattering matrix S and the time delay T in terms of the non-trivial zeros of 
l(s), the so-called Riemann zeros. 

3.1. Resonances and poles of the scattering matrix 

Standard analytic continuation of S (2.2) into the complex momentum plane [ 121 yields 

-2iz r ( ;+ iz ) i ( i  +2iz) 
r(; - i z ) l (  1 - 2iz) 

S(z)  = ?l 

where z = w +ia .  The poles 6 of S(z)  are determined by the zeros of l(s), where 
s = 1 - 2iz, and can be classified as trivial (Re 6 = 0) and non-trivial (Re 6 # 0). All but 
one (at z = i/2) of the trivial poles are cancelled by the zeros of T(f+iz).  The non-trivial 
zeros p of l( s) lie in the strip 0 < Re s < 1 and the famous Riemann hypothesis implies 
these zeros are located on the line Re s =;. For the range of w values considered in 
§ 4 the hypothesis has been verified by numerical computations, e.g. [8]. We therefore 
write p = f - it, = 1 - i2 w, where -a < t, < +a, t, E R and for convenience introduce 
w, = tp/2; both the t, and the w, will be referred to as the Riemann zeros here. To 
express the non-trivial poles in terms of the Riemann zeros, one simply equates p and 
1 - 2i6, yielding 

6 = 5, = w, - i/4. (3.2) 

Since Im 6, = -a < 0 we have, in the terminology of conventional scattering systems, 
a resonance whenever w passes through w,. Investigation of the time delay in 0 3.2 
and § 4 justifies the association of the poles (3.2) with scattering resonances in this 
non-conventional system. For later reference we note that the width of the resonances, 
as determined by I m & ,  is constant whereas the average spacing between adjacent 
zeros w, decreases with increasing momentum. 

To make the poles 6, = w,-i/4 explicit in (3.1) we introduce the well known 
product representation of the 5 function [15] in terms of all p :  

(3.3) 

where b =In 2.rr - 1 - y/2 ( y  is the Euler constant) and we have used the fact that if 
p is a zero then p* is also a zero. Using (3.3) for l (1+2iz)  and l ( l -2 iz )  in (3.1) 
yields, after straightforward manipulation and the substitutions p - 1 = -2i6, and 
p*-1=2i5:, 

For Re z = w > 0, each 6, = w, - i /4 turns out to be a simple pole of S(z)  (provided 
there are no degenerate zeros of l(s), as is consistent with the Riemann hypothesis) 
and the complex conjugate 6: = w, + i/4 is a zero of S (  z). For Re z < 0, S(z)  has poles 
and zeros at -6; and -ep, respectively. S(z)  is thus proportional to an infinite product 
of pole-zero terms. The pole-zero pairs close to the origin, including the trivial pair 
(i/2, -i/2) arising from the (f- iz) / ( f+iz)  factor in (3.4), are depicted in figure 1. 
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3.2. Time delay and the Riemann zeros 

One route to an expression for the time delay (2.15) in terms of the Riemann zeros is 
to set z = w in (3.4) and then use T = -iS*(E) dS(E) /dE.  It is however less compli- 
cated mathematically to begin with 

and use the logarithmic derivative of the product representation (3.3) of the 5 function 
[ 151: 

Using (3.6) in (3.5) with s = 1 +2iw and p =i-2iwp yields 

(3.7) 
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where the definition of Tbg [cf (2.15)] has been used to obtain (3.8) from (3.7). A 
simplified expression for r is obtained by equating T (  w = 0) = -4b - 4 +  2 In 7~ (see 0 2) 
to the right-hand side of (3.8) evaluated at w = 0, yielding -4b + 2 In rr for the fourth 
term of (3.8); hence, 

At w = 0 the second and third terms of (3.9) are equal but, as w increases from zero, 
the second term, as well as the first term, decrease relative to the third term. It is 
therefore expected to be an excellent approximation for sufficiently large w > 0 to write 

(3.10) 

The feasibility of using (3.9) to evaluate 7 numerically (provided, of course, that a 
sufficient number of Riemann zeros is available) and the validity of (3.10) are assessed 
in the appendix. In any case the first and second terms of (3.9) each provide a smooth 
monotonic dependence on w, whereas the third term provides the interesting fluctuation 
behaviour (for w > 0). 

The content of (3.10) is simple. For w in the neighbourhood of an isolated pole 
&, of S, the dominant contribution to the time delay is a Lorentzian centred on wp 
with half-width r / 2  = $, 

(3.11) 

The time delay approximation (3.1 1) therefore provides the conventional interpretation 
of a resonance (at w = w,) as a longer-lived scattering event. Equation (3.11) has the 
same form as the energy dependence of the time delay in the vicinity of an isolated 
pole of the S matrix in a simple conventional scattering system [16]. Of course, as 
the spacing between adjacent w, becomes less than r (i.e. as the resonances begin to 
overlap), it is anticipated that the signature of individual resonances in the time delay 
should be obliterated; this is addressed in 0 4. 

4. Numerical results and discussion 

In § 4.1 plots of the momentum dependence of the time delay on different w ranges 
are compared and discussed. This is followed by a numerical investigation of the 
autocorrelation function of Tfl in 0 4.2. Details of the numerical calculations which 
provide the T and rbg values (and hence the rB = T - 7bg values) required herein are 
described in the appendix. It proved computationally expedient to use (3.9) for the 
evaluation of T since a large number of Riemann zeros were available to us. 

4.1. Momentum dependence of 7 and T~~ 

Parts ( a ) - (  f) of figure 2 depict r and Tbg against w on six non-adjacent momentum 
ranges, each spanning 20 momentum units and beginning at w = 0, 100, 1000, 5000, 
35 000 and A = 133 826 702 823.5, respectively; plotting T instead of T = r /  w avoids 
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Figure 2. Plots of T and T~~ on six momentum ranges: ( a )  w = 0-20, ( b )  w = 100-120, 
(c) w = 1000-1020, ( d )  w = 5000-5020, ( e )  w = 3 5  000-35 020, (f) w = A to A f 2 0  with 
A = 133 826 702 823.5. The rapidly varying function is T which oscillates about the slowly 
varying, monotonically increasing function T,,~. Not shown is the fluctuating component 
T~ which is obtained as the difference between T and T , , ~ .  

the I /  w scaling arising from the latter. The T values for the first five w ranges were 
computed using Odlyzko's set [8] of the first -lo5 zeros whereas those for the w range 
of figure 2 ( f )  were computed from his set of about lo5 zeros beginning at the 10" 
zero. The w ranges of figures 2(a)-( c)  were chosen to correspond to Gutzwiller's plots 
of &/2 in figures 5-7 of [3]. The flat curve in each panel is T~~ and the oscillating 
curve is T ;  the fluctuating component rfl is simply the difference between the two curves. 

Several features of figure 2 are noteworthy. It provides pictorial confirmation for 
the qualitative momentum dependence attributed to rfl and Tbg in 0 2.3. That this 
particular separation of the time delay into fluctuating and background components 
is indeed the appropriate one was established by demonstrating (numerically) that the 
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momentum-averaged behaviour of T is, to an excellent approximation, that of Tbgt. 
Introducing the notation (. . . ; wC)& = ( l / A )  {w,-a/z dw . . . to indicate an average over a 
momentum interval A centred on w = w,, we can summarise the numerical results as 
follows. The approximate relationship ( T ;  w,)& -- (Tbg  ; w,)* (which implies ( Tfl ; wJA = 
0) was found to be valid over a wide range of w, and A values. For example, for a 
series of intervals of widths A = 100, 150,200 and 250 centred on w, = 200, 1000,35 000 
and A (the last three of which correspond to the lower limits of the w ranges in figures 
2 ( c ) ,  2 ( e )  and 2 ( f ) )  it was found in all cases that ~ ( T ) & - ( T b g ) ~ ~ / ( ~ b g ) ~ ~ o . l o / O .  

It is also evident that the character of T~ is changing as w increases. In figures 
2 ( a )  and 2 ( b )  where w is relatively small, the influence of the scattering resonances 
is obvious: the peaks in T have the Lorentzian shape predicted by (3.11) and all the 
maxima of T are positive with respect to Tbg. That the resonances are slightly separated 
on these two w ranges is readily established by comparing the (constant) resonance 
width r=O.5 with the mean spacing D(w) of the poles at the midpoint of each w 
range in figures 2( a )  and 2( b ) ;  D( w )  is the reciprocal of the average density p (  w )  = 
T - ~  ln(w/.ir) of the Riemann zeros [ l l] .  In table 1 it is seen that r <  D and that the 
maxima in T are in 1 : 1 correspondence with the zeros on the 0-20 and 100-120 w 
ranges. For the larger w values of figures 2 ( c ) - ( f ) ,  table 1 reveals that there is no 
longer a 1 : 1 correspondence between the maxima and the zeros and that, as w increases, 
it becomes increasingly unreliable to associate maxima in T with individual poles. In 
the plots it can be seen that most of the peaks in T do not have a Lorentzian shape 
and that not all maxima are positive with respect to Tbg. In terms of and D, figures 
2 ( d ) - ( f )  depict T in regions of overlapping resonances ( r>  D in table 1) and figure 
2( c) depicts T in what may be called a region of transition from separated to overlapping 
resonances (r - D in table 1). 

In [3] Gutzwiller estimates the w value at which the quantal structure in the phase 
shift should begin to average out, resulting in some sort of ‘quasiclassical’ behaviour. 
In terms of the S-matrix poles, one arrives at his result by equating the mean spacing 
between poles, D( w) = T/ln( w /  T), to the resonance half-width r / 2  = i, yielding w = 
T e x p ( 4 ~ )  -9 x lo5. We simply note that the momentum values of w - 1.33 x 10” in 

wc+A/2  

Table 1. Selected features of the time delay plots in figure 2. 

Resonance Mean resonance Number of Number of 
Panel w range width r spacing D maxima in T poles of S 

a 0-20 0.5 2.71 
b 100- 120 0.5 0.88 
C 1 000- 1020 0.5 0.54 
d 5 000-5020 0.5 0.43 
e 35000-35020 0.5 0.34 
ft A - A  +20 0.5 0.13 

7 1 
23 23 
30 31 
33 48 
31 60 
28 155 

‘t A = 133 826 702 823.5. 

t The same numerical results also hold for T over the same ranges of w, and A used in the assessment of 
properties of T. In particular, it was found that ( a )  (7; w J A = = ( r b g ;  wc)& (implying ( T ~ ;  W , ) ~ = O ) ,  and ( b )  
the normalised autocorrelation function c , ( E ;  w,, A )  of r obtained by substituting r for T everywhere in 
(4.2) has essentially the same E dependence as C ( E ;  w,, A) .  The quantity T = wT therefore displays the same 
‘universal’ properties as T. It appears that an analytical derivation of these properties in terms of properties 
of the Riemann zeros might be possible via mathematical analysis of (3.9). 
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figure 2 ( f )  lie far beyond this estimate for the transition from quantum to classical-like 
behaviour. However figures 2 ( d ) - 2 ( f ) ,  all of which lie in the r >  D region, are 
qualitatively similar and provide no evidence for such a distinction in regard to the 
time delay. A quantitative characterisation of T on widely separated momentum ranges 
is described in 0 4.2. 

4.2. A characterisation of Tfl 

Theoretical results for the description of the time delay appear to be confined to its 
relationship to other scattering quantities or system properties [ 16, 17, 181 and do not 
describe its distributive or statistical properties. We therefore confine ourselves to 
numerical computations and examine the autocorrelation function of Tfl , motivated 
by Ericson and Mayer-Kuckuk’s [19 ]  study of this property for differential cross 
sections in the strongly overlapping resonance region. 

The autocorrelation function C is defined in the usual manner: 

C(E;  wc,A)=([T(w)-T, , (w) l [T(w+E)--Tbg(W+E)l )*  

=(Tfl(W)Tfl(W+E))A (4 .1)  
where (. . .)* indicates averaging over a momentum range A centred on w,. To facilitate 
comparison on different w ranges we introduce the related reduced or ‘normalised’ 
quantity 

C ( E ;  w c ,  A )  =(  Tfl (w)  T f l ( W + A ) ) A / ( T i ( w ) ) A  (4 .2)  
which has the value one at E = 0. Figures 3 ( a )  and 3 ( b )  show plots of C ( E ;  w,, A )  for 
w, = 200 and w, = A = 133 826 702 823.5, respectively; in each case A = 200 and E ranges 
from 0 to 10. The averages in (4 .2)  were evaluated by numerical quadrature (both 
Simpson’s rule and the trapezoidal rule) and their convergence established by decreas- 
ing the integration step size until successive C ( E ;  w , , A )  values agreed within 0.001. 
The following features of figure 3 merit some discussion. 

(i)  Although the mean spacing between poles of S varies by a factor of -6 between 
figures 3 ( a )  and 3 ( b )  ( D ( w ) = 0 . 7 6  at w = 2 0 0  whereas D ( w ) = 0 . 1 3  at w = A ) ,  the 
c (  E ;  w,, A )  plots in figure 3 and corresponding plots (not shown) with w, = 500, 1000, 
5000 and 35 000 are almost indistinguishable from each other on the scale of the plots. 
The expected fluctuations in C ( E ;  w,, A )  due to a finite averaging interval were observed 
as A was varied from 100 to 300 in increments of 50 but were barely discernible on 
the scale used in figure 3. This shows that the autocorrelation function of Tfl is 
approximately independent of w, and A, i.e. 

C ( E ;  w,, A )  = C ( E )  (4 .3)  
and that it therefore provides a characterisation of the fluctuations in the time delay 
of our model system which is ‘universal’ in the sense that it applies regardless of the 
range of w, in particular whether r > D ( w ) ,  r < D ( w ) ,  or r - D ( w ) .  The detailed 
shape of C ( E )  can undoubtedly be traced back to the poles of S via the expression 
(3 .9 )  for T but a more interesting question is whether the shape is a particular property 
of the model system or is a generic property arising from the GUE statistics of the real 
parts of the poles, i.e. the imaginary parts of the Riemann zeros. 

(ii) Examination of either plot in figure 3 reveals that C ( E )  decays from 1 at E = 0 
to -0 at E -0 .4 .  For 0 .4<  E < 10, C ( E )  oscillates about zero but shows no sign of 
approaching zero with increasing E,  implying the existence of long-range (i.e. E >> r, 
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Figure3. Plots of the normalised time delay autocorrelation function c(  E ;  w,, A)  as obtained 
by averaging over a momentum interval A centred on (a )  w,=200, and ( b )  w,=A = 
133 826 702 823.5. The broken curve is a Lorentzian whose half-width /3 is determined 
numerically from the small-e behaviour of c; p =0.28 and 0.27 in panels ( a )  and ( b ) ,  
respectively. 
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D ( w ) )  correlations in Tfl. Ignoring the prominent negative correlation at E - 7  in 
figure 3, one is struck by a remarkable qualitative similarity between figure 3 and 
experimentally determined cross section energy autocorrelation functions depicted in 
[20]. The oscillations in the latter at large E values have been attributed to averaging 
over a finite energy interval. On the other hand, the dominant oscillations in C ( E )  

were found to be independent of the averaging interval, as described in (i). The effect 
of a finite range of data on cross section fluctuation analysis has been addressed by 
Dallimore and Hall [21] but an analogous treatment for time delay is not available. 

(iii) In an attempt to provide a quantitative understanding of the small-s behaviour 
of c (  E ) ,  we assessed the suitability of a Lorentzian autocorrelation function E( E )  with 
half-width p : 

P 2  E(&)=- 
E 2 +  p2' 

(4.4) 

This arbitrary choice is motivated by the theoretical work of Ericson and Mayer-Kuckuk 
[19] who obtain (4.4) as the cross section energy autocorrelation function for a model 
in which the scattering amplitude is a sum of resonance terms of constant width 2p >> d, 
where d is the mean resonance energy level spacing. Their prediction has been verified, 
for small E, by comparison with experimentally determined cross section autocorrelation 
functions in [20]. The broken curves in figures 3 ( a )  and 3(b) are E ( & )  with P = 0.28 
and 0.27, respectively; the excellent agreement between E ( & )  and C ( E ;  w,, A )  at small 
E is evident in the insets of figure 3. For all other values of w, considered the same 
level of agreement was obtained and the P values were between 0.27 and 0.28. 

The p values were determined by expanding each function about E = 0 to second 
order in E and comparing coefficients, namely 

C ( & ;  wc, A)-(1+&(Tfl(w)T;l(w))a+b&2 ( T f l ( W ) T ~ ( W ) ) A ) / ( T 2 R ( W ) ) A  

E ( & )  = 1 - & * / P 2 .  (4.5) 

For all values of w, and A, ( Tfl( w )  TA( w ) ) ~  - 0, as required of the Lorentzian form, 
and the half-width /3 was then determined numerically from 

(4.6) 

The interesting feature of the analysis is the information contained in the p values: 
they are essentially constant over a wide range of w, values, supporting the suggestion 
in (i)  that c( E )  provides a universal characterisation of Tfl. The /3 values are approxi- 
mately equal to r / 2  where = 0.5 is the constant width of the resonances in our model. 
Thus it appears that in the r> D region the width of individual resonances can be 
recovered from the time delay autocorrelation function whereas this information is 
obscured in time delay against w plots. Whether the relationship p = r/2 is particular 
to the model or is of more general applicability is a question requiring further study. 
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Appendix 

The quantity T is computed from (3.9) by changing the infinite summations to finite 
ones as follows: 

Here N is an integer chosen large enough to ensure that (Al )  converges within a 
specified tolerance (discussed below); the poles wp have been relabelled wi; k is such 
that wk is the pole closest to w ;  the lower summation limit max( k - N, 1) in the third 
term ensures that i 3 1 for k - N c 0 (i.e. for sufficiently large N or sufficiently small 
w). The zeros t i /2= w, used in our evaluation of T via (Al)  are those computed by 
Odlyzko [8] and the relative ease of computation of 7 afforded by (Al)  relies on the 
considerable numerical effort invested in the computation of the zeros. An alternative 
route to T is provided by (2.15) which explicitly involves the 5 function and its first 
derivative. The increasing numerical difficulty, with increasing w, of evaluating series 
representations of the 5 function have been noted by Gutzwiller [3]. However, to 
assess the accuracy of (Al)  we evaluated, for w s 5000, 

using the Euler-Maclaurin summation formulae [22] for 5 and l', yielding an 'exact' 
T (  w) = limN+m T (  w; N ) .  

Our approach to ensuring that (Al )  provide a reliable estimate of T is as follows. 
For selected w values in the ranges 0-20,100-120,1000-1020, and 5000-5020 of figures 
2(a)-(d) ,  (A2) was evaluated and compared with the T ( W ;  N )  values obtained from 
( A l )  with successively larger N values. For the 0-20 and 100-120 ranges, N values 
of 700 and 800, respectively, are found to provide approximate T values which are less 
than the exact values by at most -0.003. Because the lower limit in the second 
summation of (Al)  is unity for these N and w values, the number of terms contributing 
to the second summation of (Al)  is -700 and -890 (instead of 2 N +  1) for the 0-20 
and 100-120 w ranges; the exact number of contributing terms depends weakly on w. 
For the 1000-1020 and 5000-5020 w ranges, approximate T values differing from exact 
values by at most -0.003 were achieved with N = 1000 and 2000, respectively; the 
number of terms contributing to the second summation of (Al)  is now 2 N +  1 since 
k > N in each case. For w ranges beyond w = 5020 no attempt was made to obtain 
exact T values and N was determined solely by a convergence criterion suggested by. 
T ( W ;  N )  results in the 1000-1020 and 5000-5020 ranges; namely, that increasing N by 
50% for these ranges increased T ( W ;  N )  by -0.001 or less if T ( W ;  N )  was within 
-0.003 of T (  w). Applying this criterion to the 35 000-35 020 and A to A + 20 w ranges 
yields N values of 4000 and 20000, respectively. The increase in N with w is to be 
expected on the basis of the well known In w increase in the mean density of the 
Riemann zeros. 
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It is reassuring to verify numerically the approximation (3.10) of neglecting the 
first and second terms of (Al ) .  For example, T (  w = 100; N = 800) = 2.678 with the first 
and second terms of (Al )  contributing - 1 . 0 ~  and 4 . 4 ~  respectively, for a 
combined contribution to T of 0.16% whereas T (  w = 1000; N = 1000) = 13.000 with 
first and second terms of - 1 . 0 ~  lo-’ and 4 . 0 ~  for a combined contribution to 7 
of 0.003%. The approximation is seen to improve with increasing w as expected. 
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